Oscillation Results for Linear Autonomous Partial Delay Differential Equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Oscillation Results for Second-order Quasi-linear Neutral Delay Differential Equations
In this paper, some new oscillation criteria are obtained for the secondorder quasi-linear neutral delay differential equation ( r(t)| ( x(t) + p(t)x(τ(t)) )′|α−1(x(t) + p(t)x(τ(t)))′)′+ f ( t, x(σ(t)) ) = 0, t ≥ t0 under the case when ∫∞ t0 1 r 1 α (t) dt <∞. Our results improve and supplement some known results in the literature. An example is also provided to illustrate the main results.
متن کاملNumerical Methods for Fuzzy Linear Partial Differential Equations under new Definition for Derivative
In this paper difference methods to solve "fuzzy partial differential equations" (FPDE) such as fuzzy hyperbolic and fuzzy parabolic equations are considered. The existence of the solution and stability of the method are examined in detail. Finally examples are presented to show that the Hausdorff distance between the exact solution and approximate solution tends to zero.
متن کاملAlgorithms for Linear Stochastic Delay Differential Equations
Models consisting of linear, N-dimensional stochastic delay differential equations present a particular set of challenges for numerical simulation. While the user often seeks the probability density function of the solution, currently available methods rely on Monte Carlo sampling to generate sample paths, from which a density function must be estimated statistically. In the present work, we de...
متن کاملOscillation of Solutions of Linear Differential Equations
In this note we study the zeros of solutions of differential equations of the form u + pu = 0. A criterion for oscillation is found, and some sharper forms of the Sturm comparison theorem are given. §1. Number of zeros. Consider the linear differential equation u′′(x) + p(x) u(x) = 0 , where p(x) = 1 (1− x) , (1) on the interval −1 < x < 1. Two independent solutions are
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1993
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1111